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ABSTRACT 

The question considered is whether now is an appropriate time for 

a direct numerical simulation of turbulence, with particular emphasis 

on the use of the Illiac IV. 

First, it should be emphasized that the ude of numerical simulation 

as a general tool for turbulence calculations is out of the question- 

To resolve all scales of motion when the Reynolds number is R requires 

9/4 
following on the order of R   independent variables in time, and on 

3 
the order of R inR  arithmetic operations are needed.  Since many problems 

6 
of interest involve R > 10 , it is clear that there are situations well 

beyond the capabil .tias of" exis-ing or projected computers. 

The realistic goal of practical turbulence theory is to achieve 

approximate equations for mean quantities. These equations, even though 

complicated looking, should he such that the quantities involved are all 

smoothly varying functions. 

Numerical simulation can contribute to this goal in two ways: 

(1) It can provide "benchmark" problems against which approxi- 

mations can be tested.  (The attack on these problems ran 

be regarded as a precision experiment.) This report discusses 

particular problems of this kind. 

(2) It can help to provide theoretical insight into the nature 

of turbulence.  (For example, numerical experiments are 

possible that are not feasible in the laboratory.) Hope- 

fully, universal features will be found and then approximate 

methods can be developed. 

For three-dimensional problems it is shown that the Reynolds number 

of problems that can be treated, even by the new generation of computers, 
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4 4 
is rather limited (R < 10 to 4 x 10 ). The Illiac IV is especially 

restricted in treating turbulence problems.  It has a relatively small 

fast memory. For the problems of interest, there are many variables 

and the interactions are nonlocal—i.e., quantities to be computed at 

a point depend on ones at all other points. This does not mean that 

important problems cannot be simulated.  Transition from laminar to 

turbulent flow and the behavior at low Reynolds number above transition 

are of interest.  Some of these can be treated with existing computers 

(the IBM 360/195 and the CDC 7600).  However, it appears unlikely that 

a major breakthrough will necessarily result from the calculations. 

But even these calculations may serve to disprove some approximation 

methods. 

In the somewhat less realistic case of two dimensions, the situa- 

tion is slightly different. Calculations already done show a tendency 

toward Reynolds-number independence of macroscopic features.  If 

confirmed by the results of the higher Reynolds-number calculations 

(made possible with the new computers) this could be very significant. 

(The caveat about the Illiac IV still applies.) 

Finally, we consider what computer capability is needed to materially 

change the above picture, and sketch how this could possibly be achieved 

and at what cost. 
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I  INTRODUCTION 

Turbulent flows play a major role in many problems of great 

practical interest. Among these are flow in pipes (industrial appli- 

cations), wakes (reentry vehicles, submarines), boundary layers 

(separation, transition), meteorology, airplane designs, and nuclear 

explosions. Unfortunately, even at this date o«* understanding of 

turbulence is severely limited. Qualitative features are known as 

are some general predictions (based usually on some reasonable 

assumptions and some dimensional analysis). Practical problems are 

usually treated by phenomenological equations. Tne range of validity 

of these is either unknown or known to be restricted to situations 

close^to those in which the phenomenological constants are determined. 

Here the question is considered as toAwhether the advent of a new 

generation of computers (Illiac IV, Star, ASC) makes feasible a numerical 

attack on turbulence by direct integration of the Navier-Stokes equations. 

It is concluded that, while some useful problems can (and should) 

be done, it does not seem that a fundamental breakthrough is perceivable. 

This statement is particularly true for the Illiac IV because of memory 

limitations. 

■ 

I 

This should be understood in the following context: 

(1) Presumably most practical problems are so complex, both 

geometrically and physically, that we do not expect a 

direct solution to le possible from first principles. 

v2) The main obstacle to numerical solution of the Navier-Stokes 

equation lies in the fact that when there is turb"lence we 

have interesting and important motions on many different 

scale- (both space and time).  Tn particular, the larger 

mfr>m., 
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the Reynolds number the snmller are the scales that need be 

considered. Clearly, for any computer there will be some 

Reynolds number beyond which the computation of solutions 

is not reasonable. We do not expect to find asymptotic 

behaviors numerically, but rather hope that the numerics 

will Le a guide to an asymptotic theory. 

Accordingly, we phrase the question as follows: Are there problems 

of interest that can now be treated that were previously inaccessible to 

t direct numerical solution? By "interest" we mean either: 

(1) They are "benchmark" problems:  The results should be veri- 

fiable by experiments. Assuming agreement is achieved, one 

then wouiü have a much more detailed description than can 

ever be found from experiment.  (For example, one could cal- 

culate as many correlation functions and their transforms 

as desired.) These would then be tests to which approximation 
methods would be subject. 

(2) The results give theoretical irsight.  For example, is the 

transition from laminar to turbulent flow as Reynolds number 

increases due to successively more instabilities arising? 

Is our picture of energy and vorticity cascade correct? 

Alternatively, a better understanding of these effects can 

be obtained by varying boundary conditions in either wave 

number or physical spsce. Here the calculations are 

"experiments" which are either impossible or very expensive 
to do in a laboratory. 

Essentially what we would like to do is: 

(1) Determine whether there are indeed universal features of 
turbulence. 

(2) If there are such, can we develop equations which describe 

the average flows without requiring the resolution of the 
fine scales of the turbulent motion? 

To get some id - of the barriers encountered, we note that for a 

problem in J dimensions with N degrees of freedom in each linear 

dimension, the number of arithmetic operations to be done is on the 

order of 

„d+1 d+1 
aN       In N + bN 

2 
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where a and b ~ 10 . As a rule of thumb, we need N ~ R  /10 where R 

is the Reynolds number. Two things stand out:  For a given computer, 

much more can be done in two dimensions than three. To significantly 

increase the Reynolds numbers for which one can calculate (say by a 

factor of two to ten) requires a huge increase in computer capability. 

(This is particularly true in three dimensions.) 

However, it does seem that some interesting problems might now be 

done. The estimates made below are based primarily on the characteristics 

of the Illiac IV and are admittedly somewhat optimistic. While each com- 

puter has its own limitations and advantages it is not thought that the 

situation would be radically different for other computers of the new 

federation.  (As mentioned above, the Illiac IV does have memory problems 

that may prove intractable.) 

Problems that might be approached are: 

(1) The behavior of flows as the Reyiolds number is gradually 

increased above the critical value in Poisseuille flow in 

channels and pipes, and Couette flow in channels and 

between rotating cylinders. 

(2) Turbulent flows in pipes and channels for R ~ 104. 

(There are many experimental results available for these two classes 

or problems.) 

(3) Problems of homogeneous isctropic turbulence. These would 

be primarily numerical exp<;riments~tc enlarge theoretical 
understanding. 

(4) Much higher Reynolds numbers in two dimensions can be 

investigated. This is of interest theoretically and has 

practical use for atmospheric problems. 

(5) Problems involving turbulent flows in boundary layers—say 

over a flat plate. This is something that probably should 

be one of the last to be considered.  The difficulty is that 

to treat these numerically one needs to put in some (perhaps 

very reasonable) assumptions as to the behavior of the flows 

at large distance from the flow. The results might merely 

reflect these assumptions and not the correct physics. 



Some important questions will not be resolved by such calculations. 
-5/3 ,   . 

The existence of an inertial range and Kolmogoroff k    law (or pro- 

posed modifications) would not be seen in three dimensions.  (However, 

the analogous K' might be observed for two-dimensional problems.) The 

interesting questions of intermittency would also not be particularly 

clarified. 

What can one hope to be the conclusions from such calculations? 

First, we might verify the expectation that on small scales turbulence 

is essentially universal—i.e., rather independent of the large scale 

structure.  Second, one might check previous calculations which suggest 

that at sufficiently high Reynolds numbers the macroscopic features of 

a flow are rather Reynolds-number independent. From numerical experi- 

ments, new methods for treating sub-grid scale features of flow may be 

suggested. Thee (and existing) methods can then be tested by the 

calculations. 

It may be noted that compressible problems have not been mentioned. 

This is, of course, not because they are uninteresting.  Indeed, some 

methods of calculation exploit compressibility. However, there is even 

less understanding of turbulence in the compressible case.  In light 

of our expectation that a numerical program is, at least in part, to 

extend theoretical understanding, it seems best to start where we feel 

we now have the most knowledge. 

If a numerical program is undertaken (say on IIliac IV) it should 

go forward to begin with at a rather moderate pace. First an attempt 

should be made to see how a program might be written for some simple 

problem.  It seems clear from our estimates that problems of interest 

will strain the capability of the Illiac as it is expected to be in 

the next year or so. While we have tried to anticipate problems that 

might arise due to pecularities of the Illiac, there may be additional 

IB 



ones which rear their heads when a detailed program is attempted.  In 

particular it seems very likely that the computation scheme that should 

be chosen may well be determined by properties of the machine. For 

example, input-output times and memory capacity may well dictate a 

scheme that requires somewhat more arithmetic operations than a perhaps 

otherwise optimum method. 

After a program has been written, numerous tests would need to be 

performed. These might be other (smaller) calculations done in two 

dimensions and also on homogeneous Isotropie turbulence in three dimen- 

sions. The standard color-cone problem and the Taylor-Green problem 

may also be used. 

It is also thought that the whole program should not be allocated 

to a single contractor, and there should be an outside advisory group. 

The reasoning here is that since the hope is to gain insight as the 

program progresses, one would expect the selection of succeeding 

problems to be determined by what has boen already found. 

In the following sections we amplify and sketch the reasoning for 

the above remarks.  Section II briefly describes the present status of 

turbulence theory and experiment. Section III describes calculations 

which have been done and those that might be done.  Some general 

features of computation procedures for numerical simulation of turbu- 

lence are described in Section IV. Specific details of the Illiac IV, 

which determine what calculations might be done and how the choice of 

procedures may be restricted, are discussed in Section V.  Some estimates 

of computing time are given there. Problems of interest that could be 

done, and how they might form a program of work on the Illiac, are given 

in Stction VI. 

A brief consideration on the design of a computer that might be 

specific for turbulence problems is given in Appendix A. 

—— 



II  TURBULENCE 

A.  Status of Theory 

Most flov/s in nature are turbulent—i.e., even if they start with 

a relatively smooth laminar profile they rapidly develop a random and 

fluctuating appearance. Qualitative understanding is readily obtained 

from the Npvier-Stokes equations for incompressible flow: 

(£ + * ' V) * = - VP + vV v (1) 

V • v = 0 (2) 

where v(r,t) is the velocity field, P(r,t) is the pressure and v is 

the kinematic velocity. Typical values at STP are (in square centi- 

meters per second) v J  = 0.145,  v   = 0.011,  v  = 0.00116. 
air HO Hg 

Let us estimate the ratios of the non-linear terms to the viscous 

terms—i .e., 

R 
v • Vv 

2 
vy v 

If V is a typical value of the velocity and L a measure of the scale 

over which the variations are occurring, we see 

R = XL 
v 

In most cases this is a large number. For example, for water flowing 

in a pipe of radius 10 cm with velocity 10 cm/s, R =- 10 . For air 

:% 
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flowing at 10 m/hr over a structure of radius 100 meters, R =" 4 X 10 . 

Under these circumstances one might assume that the viscous terms are 

completely negligible. However, let us note that the couvective term 

(v • W) is nonlirear. Expressed in wave number space, this shows that 

the various Fourier components are coupled together. Even if we start 

with only small wave numbers the coupling will bring in higher wave 

numbers. For these wave numbers the viscous term is larger. Eventually 

it will even dominate the convective term, and convert the flow energy 

to heat. Thus we have the following picture for flows at large Reynolds 

number: Energy inserted at small wave numbers cascades to higher wave 

numbers due to the nonlinear terms. Eventually viscosity dominates and 

the energy is dissipated. The random fluctuating behavior seen at large 

Reynolds numbers is then due to the fact that high wave numbers (i.e., 

high Fourier components) are excited. 

An interesting description of the onset of turbulence has been 

given by Landau:1  Below a certain critical Reynolds number the laminar 

flow is stable.  Slightly above the critical Reynolds, any small per- 

turbation will grow slowly until the solution is the original laminar 

flow plus a small, sinusoidally varying contribution with phase deter- 

mined by the perturbation. For larger R the separation into laminar 

and sinusoidal becomes no longer meaningful. We then have a periodic 

flow, but not merely simply periodic. As R increases further we get 

a new instability and eventually a doubly periodic flow with two arbi- 

trary phases (essentially determined by the usually undescribable per- 

turbation). Proceeding to higher and higher R we get successively more 

and more nultiple periodic motions with more and more arbitrary phases. 

Hence the randomness of the motion. 

References are listed at the end of this report. 
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Now fcr practical purposes v,e are not interested in all the details 

of the fluctuating motion, but rather in certain average values.  (For 

the experimentalist these tend to be either spatia or temporal averages, 

The theorist, whose point of view we take, thinks in terms of ensemble 

averages, and implicitly an ergodic theorem.) With bars denoting the 

appropriate averages it is conventional to divide the flow into its 

average and fluctuating parts—i.e., v = v + v'. Taking averages of 

Eqs. (1) and (2) gives 

b -  -  b - 
—- v  + v  -— V 
bt  i   J bx  i 

■J 

bv. 
bP   b  J 
-— + -— lv- v v 17 • v = 0  . 
bxi   bXj  ^ bXj    1 J, 

(3) 

These are perfectly nice equations for v, but involve, however, the 

Reynolds stress, v v . Thus, we have more unknowns than equations. 

Of course, we can obtain equations for the Reynolds stress by multi- 

plying the original Eqs. (1) and (2) by v and then averaging. But then 

-T—r ■7-7—r 
quantities like p v and v v v occur. Again more unknowns than equa- 

i     i j k 

tions. Proceeding to higher order we find the came situation at each 

step. Breaking this chain is the closure problem. Almost all approxi- 

mation methods are based on some assumption as to how this can be done. 

For example, the way the Reynolds stress occurs in Eq. (3) suggests 

replacing that term by one like that due to the kinematic viscosity 

but with a fictitious effective viscosity. This eddy viscosity could, 

of course, depend on r and v, and even more complicated quantities to 

be discussed later. Alternatively, assumptions have been made about 

higher order correlalion coefficients.  It may be noted that the 

resulting equations are then frequently more complicated looking than 



Eqs. (1) and (2).  However, they are hopefully for smooth, y varying 

functions and therefore easier to use In calculatioi s. 

What can we say about the Reynolds stress te.»sor using our 

qualitative Ideas and some dlmensxonal analysis?  If the Ideas about 

cascading In wave number space are right we expect that 

vj
/(r,t)v'(r+8,t) 
1 ~   J  

Is rather Independent of r for small s.  Let cp (k) be the Fourier 
~ ~ 1J ~ 

transform with  respect   to s—'i.e., 

-3 prP -Ik«» —r 
©    (k)  =  <2it) fje' ~ ~ v'Cr.t) v'(r+8.t) d »     . 

1J  ~ 'IJd 1 - J ~ ~ ~ 

The trace of this quantity can be Interpreted as the kinetic energy 

at a given wave number.  Indeed, 

Defining 

v;(r,t) v'(r,t) = 3u = I f «p^ (k)d k  . 

E(k) - | JJ (P^U) k* df^ 

(the ittegral is over a spherical shell of radius k), we have 

[ E(k) dk - 3/2 u ■ kinetic energy per unit mans. 

Consider the following aiapls model: V« have s stationary stste 
2 

with turbulent energy, u . being introduced over a macroscopic length, 

I.    By the cascsde process, this is then transferred to higher wave 

nuabers. A aessure of the tiae for this to take place is 1/u. Hence 

  mm.    
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2 3 
the rate at which energy is fed into the cascade is u /(X/u) = u /£. 

At sufficiently high k this energy is dissipated by viscosity at a 
3 

rate < which (if we are to have stationarlty) must be e = u /jt. In the 

dissipation region the only relevant parameters are presumably the 

kinematic viscosity v, and the dissipation rat*> e. The appropriate 

time and space scales relevant are then those which can be formed 

from these quantities. They are the Kolmogoroff8 mlcroscales of time 
l 3  i 

T = (v/c) , distance K = (v /e)*. From these one can form the velocity 

scale v = (ve)*. Now let us look at ranges of k which are considerably 

larger than l/£. One expects E(k) to be a function only of c, I,  and K. 

Then on dimensional grounds 

E(k) = u i F(ki,kK) (4a} 

or alternatively 

E(k) = v H C(ki,kK) (4b) 

Note:    The various tl»e,  distance and velocity scales are sll  related 

to the Reynolds number.    Thus 

^.-i - ~ R  * — ~ R   " 
i/u 

(5) 

No« let us suppos« that w« havs a region of k such that: 

kl :*> 1. and simultaneously ka «x I (6) 

Proa Eq. (4s) v« then expect 

r(k) - u i r(ki.o) 

I 

o 



and 'rom Eq. (4b) 

E{k) «» V H GCoo.kK) 

Equaling this then shows v K G(»,kK) is independent of v. This can 

-5/3 
only bo true if G(co,kK) = a (kn) '  with c some universal constant. 

Therefore we expect that there may be a .egion of k such that8 

E(k) = o eS k-
5/3 (7) 

Remarkably enough there are geophysical fl^ws in which a region of 

E(k) of this for» is not inconsistent with the data (with i» ~ l.S). 

We note though, that this requires there be a region of k far fit» 

both those k directly affected by macroscopic variation« and much 

less than the k region subject to significant dissipation.  Further, 

the inequaMties of Eq.   (8) must hold. Combining these we note a 

necessary condition for • ich a region to exist la 

1   4 
kx « 1 <c k£ or - - RT »» i 

K 

That la, the Rcyuolds number must be very large. 

Similar dimensional arguments3 arc extremely useful In obtaining 

estimates of the velocity profiles In the vicinity of walls (we will 

need a knowledge of this behavior In the followltm. Consider the 

idealised case of a steady plane-parallel flow of fluid moving in «im 

x direction in the space between moving rigid walls at x - 0 and a ■ h 

In the absence of a mean pressure gradient. The x«component of B(|. (2> 

givmt 

ll 
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i.e., 

2 
dz 

— v v = 0 
dz x z 

T(Z) = v 
dz 

v v = constant = T 
x z o 

(8) 

T'.ie average characteristics of the flow can depend only on the shear 

stress T , kinematic viscosity, and the distances z. h-z.  It is 
o 

conventional to introduce 

u ■ /T~ 
o 

Then dinensionully we expect 

v (z) 
x 

. u*f (zL, i^ül^ 

Now,   very much as  in  the derivation of  the Kolaogoroff  spectnun,  »• 

expect  that  for a sufficiently  la-ge R there will    xist a  region of z 

such  that 

/u 
finite, 

(h-z)u 
very large 

Then approxlMately 

V" ■"'' (v)   • 
At the wall »' - 0. Then Eq. (8) tells us 

z 

IU 

d/ E-0 

u 



Then,   as  the first  term  in a Taylor series expansion,  we have 

*2 
-  ,   \       u 
v   (z)  =   z 

X V ■ "* (¥) ■ 
i.e.. f(y)  = y 

It may be noted  that using  the other N-S equations,   one  can  rhow that 
4 

the next  term  in the expansion  is y   .    Presumably our approximation is 
*      ■ v good out  to some z of  the order of  z    = -»•  ;   I.e.,   the  linear law holds 

v u 
out  to a z = Q -r  .     From experiment one finds a ~ 5   (this   region 

v 
o s z «s o -y    is called  the viscous sublaytr^. 

When we are far out of   the viscous sublayer but  still   such that 
u 

(h-z) — is effectively    «     ,   we can also get an expressior   for f.     In 

such  regions  the viscous   terms are negligible compared  to   the Reynolds 
. dvv 

stresses.   Then -—«» can only  depend on z and  T   .     Therefore 
dz o 

dv » 
x       1    u 

dz    ' 7     z 

where K  (the von Karman constant)  is  Presumably universal, 

yields 

Integration 

v  (z)  « 
x -     U      In     I rr— J 

where 0 is ■ new universal integration constant. Again from experiment 

one finds < ^ 0.4. 0 - 0.1.  What arc the limits of validity? Clearly 

there Is a lower limit t  - (const) ./u*. Empirically, the constant is 

of order 30. Ve then have the following picture. For s ~ 5v/u* we have 

a linear law. For z ^ 30 v/u there Is a logarithmic law.  In between 

there is some buffer region where the t«o mux match up. The upper 

13 
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limit of  the logarithm law clearly occurs when effects of  the other 

boundary become  important. 

A principal object of  theoretical research in turbulence for the 

last few decades has been Isotropie homogeneous turbulence.     There is 

a basic assumption  that essential  features of  turbulence are universal. 

This  is  in agreement with our above qualitative description of   the 

cascade process:     as energy goes  to higher wave numbers,   nmmory of  the 

initial source is  lost.    Further,   since only ensemble averages are 

eventually desired,   a strict  probabilistic description is used.    For 

simplicity,   the assumption  is made that  the problem  is homogeneous and 

(usually)  Isotropie.    Mathematically the formulation is:4    Given an 

infinite fluid described by Eqs.   (1) and  (2),   and given  the  initial 

value of  the velocity as a random function of  position  (described by 

certain probability  laws which are independent of  position and direction), 

we are to determine the probability  laws that describe tha subsequent 

motion.    An article of faith is  included here.     It  is hoped  (conjectured) 

that nonlinear systems with a large number of degrees of freedom will 

approach a statistical  state which is essentially  Independent of  the 

initial conditions. 

Clearly there is no exact  realization of  Isotropie homogeneous 

turbulence in nature.     Indeed some features realizable  in shear flows 

rre certainly absent  in  the model.    However,   there are experiments in 

wind  tunnels (see below)  in which  the turbulence generated doe« appear 

to be approximately homogeneous and  Isotropie.    From our point of view, 

homogeneous Isotropie  turbulence should probably be considered as an 

Interesting model  from which one hopes to hot  thooretlcjil  insight. 

B.       Status of ExpcrlmontB 

Experimental studies of  turbulence (intensities,  spectre,  correla- 

tion» , etc.) have beeo carried out for about the last SO year" with 

I« 
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electronic instrumentation.  Although many of the le experiments were 

designed to study flows with complicated geometries that cannot be 

readily simulated numerically, some of them provide information that 

can be used to check the validity of the simulations.  Unfortunately 

most experimentalists have attempted to obtain as large Reynolds 

number as possible in order to study the asymptotic state of the flow, 

while simulations appear to be possible, at present, only at low and 

moderate Reynolds numbers.  Thus only a small subset of the existing 

turbulence data is useful for comparison with simulation results. 

The measurements referred to below are almost exclusively Eulerian. 

Due to the obvious experimental difficulties, almost no Lagraagian 

measurements have been made except for the simplest diffusion experiments. 

One of the advantages of simulations is the ease with which Lagrangian 

quantities—multiple particle correlation coefficients, for example  

can be calculated. 

1.   Homogeneous—Isotropie T"rbulence 

The simplest flow to simulate—unbounded homogeneous, Isotropie 

turbulence—is, unfortunately, impossible to realize exactly in an ex- 

periment.  There have been many attempts to approximate Isotropie 

turbulence experimentally.  Usually these involve using grids in wind 

tunnels, although measurements have been made on the axis of a circular 

free jet and measurements of the small-scale structure have been made 

in tidal channels and in the atmospheric boundary layer.  The geophy- 

sical flows do not produce data suitable for comparison with simulations 
3     4 o 

because R^ is large (10  to 10 ) in these flc^s.  'Note:  R ~ 2R  .) 

The wind tunnel and Jet flows provide more useful data, for 

comparison purposes, with R in the range of 10 to 200. The measure- 

ments generally consist of turbulence intensity, spectra, and second 

18 
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and third order velocity correlations. Most of the measurements made, 

up to about 196), are summarized by Batchelor4and Hinze.5 

In recent years, furt. .- experiments have leen performed in 

which great care was taken to make the flow as Isotropie as possible. 

A few examples of these are described below. 

(1) Champagne, Harris, and Corrsin6 carried out an experi- 

ment on grid-generated turbulence in a wind tunnel at 

R^ = 130. They measured turbulence intensities, 

Reynolds stress, the spectra of each of the velocity 

components, the Taylor microscale, the cross-spectrum 

of u and v and various second order space-time correc- 
tions of u. 

(2) Wyngard and Tenekes7 measured the probability density, 

skewness and kurtosis of (bv'/Öt) and(b v'/bt2) as well 

as the spectrum of (ö2v,/öt2) at R^ = 200.  This was 

in a mixing layer. 

(3) Comte-Bellot and Corrsin8 used grid-generated turbulence 

and measured turbulent energy, the dissipation rate and 

second-order correlation functions of velocitv at 
R^ = 35 to 70. 

(4) Kuo and Corrsin,9 again using grid turbulence, measured 

the probability density of v', (bv'/Öt), (b2v7öt2), u2, 

(bv'/Öt)2 and (b2v//öt2) ai: 1 the kurtosis of (bv'/bt) 

and (b v /bt ).  These measurements were made at R% = 72 
and 830. 

These measurements, as well as other recent work and the 

older studies, provide a wealth of experimental information on "nearly 

Isotropie" flow which can be compared with the results of simulations. 

2.   Pipe and Channel Flow 

The classic experiments are those of Laufer10 at R = 50,000 

and 500,000 in a circular pipe and in a wide channel. The mean profiles, 

turbulence intensity, the Reynolds stress, turbulent energy, and tur- 

bulent-energy-dissipation rate were measured at various distances from 

the wall down to zu*/v «= 3. The energy spectra of the three velocity 

16 
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components were measured at several distances from the wall.  Some 

third-order correlations at a poinc and some second-order spatial 

correlations were also measured. 

Since Laufer's experiments, other workers have continued to 

investigate these flows. A sample of some of these follow: 

(1) Bakewell and Lumley11 measured the mean profile for 

zu*/v > 2; the energy of the stream-wise component of 

the turbulent velocity, the spectra and the second- 

order correlation of u, all for 1 ^ zu /v ^ 40. These 

measurements were made at R = 8700. 

(2) Wallace, Eckelmann, and Brodkey12 have studied channel 

flow at R = 7150. The mean profile and Reynolds stress 

were measured in the range 1 ~ zu*/v > 200, as well as 

the second-order correlation of u at zu /v = 15. 

These experiments should prove the most valuable for comparison with 

simulations because these flows can be simulated "exactly." 

There is one other flow, Couette flow between rotating 

cylinders, that can also be "exactly" simulated. However, there does 

not seem to be any quantitative study of turbulent Couette flow, pos- 

sibly because of the difficulties of inserting a probe that does not 

disturb the flow too much.  It is possible that laser-velocimeter 

techniques could be applied to make these measurements. 

3.  Boundary Layers, Wakes, and Jets 

There is an enormous literature (see Coles and Hirst,13 and 

Hinze and Townsend •l4 tor summaries) containing measurements of 

transition, mean profiles, Reynolds stresses, correlation functions, 

etc., for boundary layers, wakes, and jets. Because of the difficultj 

in simulating these flows, these experiments are probably less valuable 

for comparison purposes. 

17 



Ill TURBULWCE CALCULATIONS 

A.  Present Status of Turbulence Simulations 

Turbulence calculations, using closure approximations of various 

types, have been made for many years. By suitable adjustments of the 

tarbulence model and the arbitrary constants contained therein, reason- 

able agreement with experiment has been obtained for particular flows. 

None of these models appears to be universal and it is not even known 

whether or not a universa1 model is possible. 

A few direct simulations of turbulence have been carried out in 

recent years.  These were carried out at lo"/ and moderate values of R 
A. 

and  it  is believed  that,   in these calculations,   the resolution was fine 

enough to resolve all scales down to  the Kolmogoroff microscale.    The 

published simulations have treated homogeneous-ifiotropic turbulence in 

.'"O or three dimensions. 

Lilly 15   and Deem and Zabusky16  have simulated two-dimensional 

Isotropie  turbulence at Reynolds numbers ranging from several hundred 

to a few thousand   (R    = 25 to  150).    Doubts have been raised about  the 
A. 

adequacy of the resolution of the simulations at the higher values of R; 

however there is no doubt that the resolution was adequate for R ~ 500 

(R^ % 60). 
K 

A single set of simulations of three-dimensional Isotropie turbulence 

has been published by Orszag17 and Patterson,18 using both finite dif- 

ference and spectral techniques.  In these calculations R = 20 to 40. 
X 

To date the results of these calculations have been used to test 

various theories of turbulence in both two and three dimensions. These 

18 
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calculations are extremoiy valuable as tests of theories of Isotropie, 

turbulence because homogeneous Isotropie turbulence cannot be exactly 

realized in v,he laboratory or in geophysical flows.  In particular, the 

initial conditions of the simulations can be varied arbitrarily and any 

desired Information about the flow can be obtained from the simulations 

with relative ease. 

Finally, it should be noted that a number of workers are carrying 

out simulations that are, as yet, unpublished. 

B, Calculations of Interest 

It should be emphasized that a direct numerical attack—-i.e., 

starting from Eqs. (1) and (2)—on most problems of practical interest 

is impossible now and indeed may always be so.  The reasons are the 

complicated geometries involved and, more importantly, the range of 

scales that must be described.  Below we indicate that in three uimen- 

sions the number o± computations to be done for one time-dependent 
3 ß     7 

problem is of order R AnR.  Practically, R can be 10  to 10 or larger. 

The goal of numerical simulation is to determine universal features of 

turbulence.  If such are found, one hopes to develop approximate equa- 

tions for the average flow such that the fine sides need not be resolved. 

(Even a negative result—that there are some features of different flows 

that are not universal—would be important.) 

Let us consider then what problems might be usefully attacked 

numerically with the new generation of computers.  We choose two 

criteria. 

1.  Benchmark Problems 

These p^e problems on which approximation methods could be 

tested. They should be such that as few assumptions as possible are 

put into the calculation.  Existing (or possible) experimental results 
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should be available. Flows in pipes and channels of both the Poiseuille- 

and Couette-type are of this nature. So is Couette flow in concentric 

cylinders. Boundary-layer flows over plates are less useful since some 

extra conjectures as to the behavior at infinity are necessary. 

2.  Theoretical Problems 

These are problems whose solution may lead to theoretical 

insight—and then to practically useful approximations.  (Of course, 

they can also be used to test existing approximations.) Problems of 

this type are: 

(1) Studies of flows just above the critical Reynolds number: 

These could greatly improve our understauding of the 

mechanics of transition. An example is the transition 

in Poiseuille flow in pipes.  Linear-stability theory19 

says this is stable for all R.  In practice the transition 

occurs at R - 2200. Clearly the Landau picture1 of 

transition discussed above cannot be correct here. The 

general theory of nonlinear instabilities could be much 
clarified. 

(2) Problems of Isotropie homogeneous turbulence: Presumably 

these should be done with periodic boundary conditions. 

While idealized thesa can be considered as numerical 

experiments. For example, if one has results i'  a 

very fine grid, one could see how well this could be 

modeled using a coarser grid with approximate boundary 
conditions (in wave number space). 

(3) Two-dimensional problems:  Though also somewhat ideal, 

there is some indication that the atmospheric problem 

is of this type.  (There is some disagreement as to 

whether "turbulence" can be two-dimensional since one 

method of vorticity production—vortex stretching—is 

absent. However, adopting the view that turbulence 

refers to hydrodynamical problems that require a 

statistical description, one concludes that there is 

such a thing.) Theoretically the two-dimensional problems 

are particularly interesting since, as we shall see, 

problems with much more interesting Reynolds numbers can 

be computed than are possible in three dimensions. 

20 
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Indeed, there are indications that macroscopic proper- 

ties of such flows are insensitive to the Reynolds 
20 

number.   However, these simulations may not have 

resolved nroperly all necessary scales of motion. 

For accurate simulation the enti ^py-dissipation 

spectrum should lie well within the resolvable scales. 

(4) Varying boundary conditions:  The effects of boundaries 

can be studied by numerical experiments.  Instead of 

no-slip conditions In pipes, one could coi sider other 

conditions to see what the effects are.  (These are 

"experiments" that are not feasible in laboratories.) 

Of course, in order to be useful, the numerical calculation 

must be done for problems of sufficiently high Rey >lds number.  For 

a given problem, we must he  above the critical value. Also, for any 

material increase in our knowledge, R should be significantly greater 

than has been used for calculations before. 

Some very interesting questions seem beyond the range of 

present numerical attack. One such is the existence of an equilibrium 

range and in particular an inertial subrange where the Kolmogoroff 

spectrum holds. Theoretically this spectrum is a little peculiar. 

2/3 
We see that Eq. (7) related E(k), (the energy density), to e   (the 

energy dissipation rate).  Since e is itself a fluctuating quantity, 

what is meant here? Presumably an average is meant here.  But E(k) 

is also an average.  It seems strange to relate one average to a 

fractional power of another.  Experimentally there is also some 

question.  Kolmogoroff's assumption3 implies not only the 5/3 spectrum 

but also that other statistical quantities of the small scales have 

universal values when put in non-dimensional form with e and v.  In 

particular, in the inertial range there should be universal scaling 

with e alone.  Thus the skewness 
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Uv'Cr) 

(kv'Cr)!^2 

, and the kurtosls 
Uv'(r)|4 

(Uv(r>|2 ) 

where Av'(r) = v'(x + r) - v'ix),   shou^d be universal constants. How- 

ever, measurements sugge it that skewness and kurtosls rise with R. 

Attempts to accommodate these difficulties give rise to slight 

modifications of the 5/3 power law.ai,aa Also, models33 and approximate 

calculations tend to give rise to other laws which are similar to this 

but not the same. 

Can we resolve the question by numerical simulation? Probably 

today we cannot. Thus, for the existence of an Inertlal range, we saw 

that one must have a range of k such that simultaneously 

kn « 1 and ki » 1 , 

Of course It Is somewhat arbitrary as to what these Inequalities must 

be, but let us assume 100:1 Is a reasonable value. To see a power law 

one would need several decades in k.  Let us suppose this Is two. At 

the lower end (k ) we must have 
o 

k Tl « 10 
o ' 

-1 
k i ~ 10 
o 

and at   the upper end   (k  )  we have 

therefore 

-2 4 
k T) =»■ 10       ,       k  £ =  10 

i/Tl ~ 106 
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Indeed,  •• w« ■•« below,  t/T\ la the order of  the ntwber of  linear grid 
6 

point* one needs for • calculetlon,  end 10   will be found to be pro- 

hibitive. 

The Reynolds nuabere that can be uaed for a given ooaputer 

ar« deterelned by the resolution r-quired.    In the caae of  Isotropie 

hoao^eneous turbulence, ee have only  teo lengths—L, a periodicity 

length,  and T),   the Kolaogoroff  length scale.    Soasehat acre atrlngent 

conditions are »et  In contained Hows,   ^uch as plpea.    Here,   la addition 

to r    (the pipe radius) and T), we have the thickness of  the viscous 
0 . 

sublayer 6-5 v/U  ,  and  the  thickness of  the region over which  there 
v 

li a change fro« the linear law to the logarlthalc region,  6-30 v/U . 
D 

Froa experlaent we take U  (the friction velocity) and U the turtaul 

level to be - -* with U the aean velocity flow. «1th the Reynold* 
20     a 

nuaber R defined by R ■ U r /v. the various lengths are related aa: 
a o 

JL _ lü 100 
6 - 

r    3/4  '   v   R 
o   R 

900 

b   R 

Table 1 gives these rates for varloua interesting Reynolds nuabers. 

Table 1 

RATES FOR  SELECTED REYNOLDS KUMBERS 

R o b   o 
5 /r 

v    o 

2,000 0.03 0.29 0.09 

5,000 0.017 0.10 0.02 

10,000 0.010 0.09 0.01 

20,000 0.006 0.029 0.005 

40,000 0.004 0.129 0.0025 

100,000 0.002 0.009 0.001 

1,000,000 0.0003 0.0009 0.0001 

;n 
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Proa this t«bl« MM« OODCIUSIOB« can bm drawn,    for R - 10 .  adäquat« 

rvMlutlon la ac^tavad •ttb a lioaar grid of about  100 polata; 

R -   2 x 10    to 4 X 10    raqulraa about  300 point a; II  - 10* roqulroa 

about  500 to 1000 point»,  •ml« R 

10.000 polnta. 

10    raqulraa batvaoo 9000 and 

2* 
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IV    COWnrTATlOlUL WTMQOS 

Ihm s«tMral  problc« it to  find Mluttou of Eqs.   (1) •od   ;2)   lo 

• rogloo V «lib «pproprlat* boundanr coodltloo« oa ihm bouodln« surface 

S.    lUnjr »ch—n« havo boon proposed  (scd uood» for suMrlcsl  cslculs- 

ilOÄ.    Tbojr csa bo cbsrsctsrltod  in »sny dlffsrsnt «ays. 

OB« mmf  im in tmrmm of BulsrlsA or Lof rsagisa for«.    Tb« Uffrsaclso 

forwilstloos srs cbsrsctsrlMd by • coordiaate systsa that aoves vitb 

tba flo».    Por flovs that ar« ralatlvoly ua<Mwpllcatsd.   tbls  is a vory 

«ttracttv« Mtbod.    Por tb«violent floes of a turbulent fluid there 

are serious diaadvaatagea aad aoae possible adrsatagea.    The adventaf« 

night be that the floe «ould looh auch ampler la Lagraacian coordinates. 

The dlaadvantage is that an initially «ell ordered nesh «ill bscoas 

badly distorted.    The problc« the« is to heep traeh of «hieb particlea 

are in the inaediate vicinity of a given particle in order to deteraiae 

the forces they esert.    «bile «orh baa oeen (aad is being) done oo thia 

fonsulation.   it  is felt  thst  the asaaa to iaplaaent such a calculation 

efficiently are not sufficiently «ell understood to be uaed in evaluating 

feasibility of  turbulence calculation be.« (i.e.,   the study of such 

aethods  is a «orthy reaearch project  ia ita o«n right).    Accordiogly. 

«e restrict ourselves here to the K-8 equations in the for« given shove. 

(A recently proposed asthod of Chorin**  «hieb is soasshat related «ay 

be noted,    in t«o diaeaaioaa the aethod follova the aotioa of a finite 

ouaber of  vortea eleaeots; hoeever,   the accuracy obtainable and  (he 

eatension to three diaenslons  is not yet kaoan.) 

Another «ay of characterising cooputational aethods is accordiag to 

ahether they are finite differeace ia phyaical space, or spectral aethods. 

or a coabinatlon. 
as 

    



Tb» dlff*r«BC« Mtbodft can b* subdivided Into wbtthvr th«y c«I- 

oulat« the "prlnttiv«" variable« P and v or related ones.    (In two 

disenalona tbeae are a atrean function and a vortlclty function.     In 

three dlaenalona one neoda a vector potential.)    For t«o^llaenalonal 

calculatlona the use of  tb^ae derived variables baa been ratber popular. 

Hovever.   there la aoae suspicion that «ore accurate results are obtain- 

able using the primitive variables.    The reason Is that  in calculating 

the vortlclty function one is trying to find the derivative of a rapidly 

vnryleg quantity.    Accordingly ve will nake eatlnates assuning P and v 

are being calculated directly. 

in assessing finite difference netbods In turbulence calculation» 

It la  laportant  to note that  turbulence la cbaractericed by a wide 

range of excited scales of notion.     (See Section III for an exaaple.) 

To deal »itb thla, one ca*> Introduce very «any grid points.    Another 

approach,  «hen one knova a priori where the snail acale notions »ill 

be.   Is to appropriately stretch tte coordinate acale.    Por eaanple 

in the pipe floe (ainilsr to the floe described In Section II). nost 

of the turbulent production occurs st s distance fro« the walls that 

la only a few percent of the radius.    Accordingly, one would like to 

arrange the aesh so that a aignifleant fraction (perhape one-fourth) 

la devoted to that snail region.    Actually one will probably want  to 

go In both directiona. 

Another procedure*0   la to go to bigber order difference schönes. 

Thus one can apparently obtain the aaae accuracy (In d dlnenslaos) by 

"»lot  ty)    of  the nesb points nseded in s second-order difference csicu- 

Istlon by going to s fourth-order schone.    This can be very aignif leant. 

In a ten- or three•dinenaional calculation, one baa to atore at any 
2 3 

tine step 2*    or 4N    nunb»rs.  respectively,    «ince the S*s of interest 

sre on the order of  13S to 1034. s factor of four (or eight) la of 

considerable Inportance la tern» of nenory  requlrenent».    One. of oourse. 

if. 



1 

paya A price—«or« arithAetlc«! upemtlons «•-• D*«ded and hmco co«- 

puttsg (IM  is  iDcr*M*d.    E«tla~t»a of vhat ont («IIDI and lo»«a by 

SotDf tn tht» direction are very alatlar to the coapariaon given balo« 

between pure apectral Mtboda a.^* a «Ued apoctral-difference approach. 

Spectral aetboda*0   Involve exp^ndlnr  tbe flelda  In tera» of an 

appropriate finite aet of ortlio.ion*l  functiona.    Tbe N-S equatlona 

then becoae coupled ordinary dif'er*<o'.lal equation» (in tiac) for tbe 

expanaion coefficienta.    This foraulatlon baa a nuaber of attracilv« 

features.    Thus,   for a given or**T of eccuracy, one need« to coaaider 

aany fever degreea of freedoa.    Aiao «mvergence,  tben it occur«,   la 

ve»7 rapid (i.e..   to paaa froa fay 91 accuracy to 1% aeoas to require 

very fee addition«! ortbogonal functiona).    Tbe dlaadvaatefea are tbat 

one auat  Mnd functiona with appropriate propertlea corresponding to 

a given geoa^trical arrangeaent.    Furtber tbe transforas tbat tbe 

expanaion  iapllea auat be evaluatablo by  noae efficient algorltba. 

sucb aa the faat Fourier transfora.    Hovever.  sucb functiona are 

known for tbe ample problena enviaagad bare.    For periodic conditiona 

one can uae Fourier transforas.    For pi pea and channel a. one can uae 

Cbebyabev polyooaiala.    Another disadvantage ia an increaae in ooaputing 

tiae.     («e will COM back to thia.) 

Actually, one la not constrained to a pure for* of finite dif- 

ference aetboda or to pure spectral aetboda.    A aix In «hieb aoae 

coordinates are treated one way and otbera another ia possible, and 

probably even optimal. 

To get possible estlaatea of ooaputer requlraaeota, we 

oonaider two aetboda of calculation.M Probably neither ia optlaal 

(in particular, cf. Section V), but they do deacribe the kind of rangea 

one alght go over if one tried various of the altematlvea aketchad 

above. 
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A.      Method  1 

On* •olvck   th* vsloclty •quatioo «« a Marching proble« with finite 

dlff«r«no«s In spac« and tUM (•«•ualng • ••ooDd-^rdcr scbMH»).    Asnoiing 

H Msh point»  In emch ipatlal direction.   In two (three) dlnen»lone  there 
2      3 

mrm 3» (43t  ) variables to be obtained at each tlae point.    If N is large 

the nsln ooaputatlon proble* is to deteralne the pressure froai the 

Poisson equation 

A - -9 •  (v •  V)*      . (3) 

Let us suppose that the solution can be obtained by a nethod equivalent 

to a Fourier transfora technique,    (with periodic boundary conditions, 

this would indeed be a Fourier transfora.    for pipes and channels this 

sight bo a Fourier  transfora in  two dinensions and Chebyahev expansion 

in the third.)    «e resark that this Is not necessarily ths noat efficient 

•ethod of solution.    With,  for exaaple,   transforas in all but one 

diwenaion and treating the reaalnlng diaension by netbods of inverting 

tridisgonal aatrices or Uockney's aethod8* one can get by with slightly 

fever operations.    (The saving though is only a factor on the order of 

two or so. and haace «a ignore it.)    For large M.  than our aajor coaputlng 

effort is to take the Fourier transfora of the pressure equstlon,  and 
2    3 

then invert.    This involves two Fourier transforms on N (N ) vsrisbles. 
2   2 

Using the fast Fourier transfora slgoritha we then need 2{H In M 

2   2 3   3 
additions plus fN In N aultiplicstions) or 2{H In H additions plus 

.  3       3, 
IN In N  J.    For siapllclty let us aasuae one aultipllestion to be 

equivalent to two additiona.    (The tines for these is indeed roughly 

»hat of the Illiac.) 

Then the additions needed in 2D are 

2        2 
4N  In K , (4a) 

.- 

^^ mmm 



wm 

and  In 30 we need 

3        3 
4N  In N (4b) 

for one time ftep. 

Actually  theae are only asymptotic fonaulas.    For the range of N 

we will be considering they are not  too bad for two-dimensional  estimates, 

but rather poor for the  three-dimensional case.     Indeed we have completely 

omitted  the calculation of  the velocity  terns in real  space and the Fourier 

transform of  the pressure in transform space.    Since these are both  local, 

In that at most a point and its close neighbors are involved,   this giver 
2      3 

a number of operations ~- N    (N  ).    A more correct estimate of  the number 

of equivalent additions  is  then in 2D: 

and  in 3D: 

N 2 2 2 
Jf  * 4*  In N    + SON 

N 3 3 3 
jy   * AH  In N    ♦ 150N 

per  time step 

per  time step 

(5a) 

(5b) 

How ».any  time steps are needed?    For stability we need 

^ Ax       L 
At < — "• — 

U       NU 

where U is typical of the overall flow velocity and L is a typical 

dimension of the system. The total time T that we might want to cal- 

culate is some significant multiple (perhaps about ten) of the macro- 

scopic time L/U for something to happen to the whol*» system. The number 

Note: The fact that we may need a fine grid resolution near a wall may 

still not cause trouble with the Courant stability condition. Thus in 

the boundary layer the flow is nearly parallel to the wall and the condi- 

tion Involves only the projection of the convectlng velocity on the grid 

increment in that direction. 
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of time steps N then is such that 
T 

N At ^ mL/U     or     N « mN 
T T 

Therefore the total number of operations Is 

3     2        3      2 
in 2D = mN [41n N~ + 50} ^ N {401noN + 500] (6a) 

4     3 4      3 
and In 3D = mN {41n N ' + 150} « N {401n N + 1500} (6b) 

2 ~ 

The total time for such a calculation is then the above numbers times 

T, the addition time. 

B.  Method 2 

Here one imagines using purely spectral methods.  For example, 

suppose we can use Fourier transforms. If k is the maximum wave vector 

in each direction we have 

in two dimensions 

and in three dimensions 

(2k) 

(2k)' 

real variables 

real variables . 

Here the whole problem is involved with calculation of the nonlinear 

terms in the velocity equation (which were asymptotically unimportant in 

Method 1). An efficient means of doing this is by passing back and forth 

between Fourier space and real space.  It has been shown 7 that in two 

(three) dimensions this can be done with 20 (72) fast Fourier transforms. 

Therefore, for one time step the number of effective additions is 

and 

k 2 2 
JT    ~ 40(2k)   In  (2k) in two dimensions 

k 3 3 
Jf   ^ 144(2k)   In  (2k) in three dimensions, 
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of time steps N then is such that 

N At ^ mL/U     or     N ^ mN T T 

Therefore the total number of operations is 

<n 2D = mN |;41n N + 50} «= N3{401n N2 + 500} (6a) 

and in 3D = mN {41n N ' + 150} « N {401n N3 + 1500} (6b) 

The total time for such a calculation is then the above numbers times 

T, the addition time. 

B.  Method 2 

Here one imagines using purely spectral methods. For example, 

suppose we can use Fourier transforms. If k is the maximum wave vector 

in each direction we have 

in two dimensions 

and in three dimensions 

(2k) 

(2k)' 

real variables 

real variables . 

Here the whole problem is involved with calculation of the nonli-iear 

terms in the velocity equation (which were asymptotically unimportant in 

Method 1). An efficient means of doing this is by passing back and forth 

between Fourier space and real space.  It has been shown87 that in two 

(three) dimensions this can be done with 20 (72) fast Fourier transforms. 

Therefore, for one time step the number of effective additions is 

c/f
k ~ 40(2k)2ln (2k)2 in two dimensions 

and 

J-   ~ 144(2k) In (2k)     in three dimensions. 
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For comparison, it is important to note that the accuracy for a 

given k is that by second order finite differences for an equivalent 

mesh of size 

N = 4k  . 
e 

Expressing everything in terms of N we see that the spectral method 

requires 

variables in two dimensions 

and 8Ne variables in three dimensions( 

2      3 
This can be compared with the numbers 2N and 4N for Method 1 (i.e., 

in two dimensions we have a saving in memory by a factor of four and 

in three dimensions by more than a factor of 10). 

What do we pay in computing time? Using the asymptotic formulas 

we obtain 

-k 

in two dimensions 
r. 

and in three dimensions 

2.5 

IF  =4'5 

^a 

Actually the time disadvantage here is quite overestimated. The 

relatively s-all N that would be of interest is such that these ratios 

are more like a factor between one and two. The main disadvantage of 

the spectral methods seems more likely to be their lack of generality 

and increased complexity of coding. 
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V  ILLIAC IV CHARACTERISTICS 

To estimate computing times it is useful to have a brief description 

of the properties of Illiac IV, as perhaps it may be within a year. 

(Only characteristics essential for our evaluation are given.) The 

essential conclusion is that memory requirements drastically limit 

the usefulness of the Illiac in turbulence calculations. The essential 

characteristics include: 

(1) Processors.  There are 64 parallel processors. These can 

all be performing the same operations, or some can be 

inoperative. One PE can do a 64-bit floating-point add 

in 30 ns and a floating-point multiply in 600 ns. 

(2) Memory. 

(a) There is a 1.28 x U 64-bit-word working-array storage. 

(b) There is a 16 x 10 64-bit-word disk storage. The 

transfer rate from disk to array is 107-word per second. 

This is somewhat misleading, so we spell out the details. 

The disk is arranged in 52 bands, each with 300 pages 

of 10 64-bit words.  The unit of transfer is one page. 

Then 133 ius are needed to transfer a page. However, 

this requires having immediate access to the desired 

page.  The disk rotates in 40 ms.  If one has to seek 

out a random page we might expect the time to be ~10 to 

20 ms.  Further limitations are: (i) it takes 133 /is 

to switch between bands, and (ii) one cannot read on 

one band and write on another simultaneously.  Indeed 
it takes another 133 us to  change from reading to 

rewrite. The principal conclusion here is that to 

use the 10 -words-per-second transfer rate one must 

have stored data in exactly the right place. As much 

as possible all numbers needed during a set of calcula- 

tions should have come from a given page and neighboring 
pages. 

(c) There is also a buffer disk of abcut ten times the Illiac 

disk and a transfer rate about one-tenth that of the 
Illiac disk. 
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(d)     There  is a Unicon laser storage device with an on-line 
storage capacity of ~109 64-bit words and infinite off- 
line storage with a transfer rate of  105-words-per- 
second. 

Properties   (c) and  (d) have  little effect on computing capability 

but do restrict  the amount of  information one might want  to  bring out 

of  the computer. 

It  is  somewhat  instructive to compare  the  Illiac  IV with other 

machines.     Take as a basis  the roughly comparable  IBM 360/195 and the 

CDC 7600.    Their characteristics are approximately: 

• Add  time ~ 100 ns 

• Multiply time  ~ 200 ns 

• Fast Memory    (0.5 to 1) X 10  34-bit words. 

We note that since the arithmetic times are of the order one-third 

that of the Illiac, the factor of 64 (due to the many processors) is 

effectively reduced to a factor 20. There is, however, the question of 

the efficiency with which one can employ the 64-fold parallelism. For 

3     6 
example, suppose one were calculating using a (12«) ~ 10 grid. Let 

us suppose that the bulk of the calculation can be done with the full 
2 

64-fold parallelism. The boundary points are of order 6 x (128) 

~ 60,000 points.  These are about 10% of the calculation and might 

require only six processors. This will then double the computing time. 

A not unreasonable estimate of the Illiac advantage over the IBM 360/195 

or CDC 7600 is then about ten.  (This assumes the whole problem be 

contained in the array memory:  If not, for the reasons given above, 

this advantage may be drastically reduced.) 

Similar estimates for Star and ASC are more difficult since much 

less is known about how well these will work.  Guesses as to the 

improvement of Star over the CDC 7600 seem to be a factor of three 

while the ASC improvement might approximate two (for one pipe) to 
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eight for four pipes.     Again the problem of  implementing  the parallelism 

remains a question.     (One  interesting property of  the ASC  is  the apparent 
ß 

capability of increasing the fast memory to (4 to 16) X 10 words. This 

could be a great advantage for turbulence calculations. ) 

Let us now try to make some estimates of computing times for problems 

of various sizes. 

An absolute minimum is obtained by taking the number of equivalent 

additions, multiplying by the add time and assuming we can use the full 

64-parallelism perfectly.  In Tables 2 and 3 we give the results in two 

and three dimensions corresponding to Methods 1 and 2. We give number 

of variables, time per step, and total time (assuming T =10NAt). 

(Here t , t are time per step for Methods 1 and 2; U , U the number 
12 12 

of variables; and T , T are the corresponding total times.) An impor- 

tant point to be noted from these tables is that for comparable accu-acy 

t2 iS n0t rauch greater than t , while the number of variables to be ke4:.t 

is much smaller. 

To be realistic we should allow some factor for inefficiency. 

Accordingly, all times should really be multiplied by some factor— 

probably between two and ten: Let us say five. What problems are 

now within reasonable limits? Suppose we put an upper limit of 100 

hours for one problem. Then we see that in two dimensions we can at 

most consider N = 2048 (or K «• 512), while in three dimensions the 

limits are N = 256 (K = 64).  If we drop our limit to approximately 

ten hours the numbers are N = 1024 (K = 256) in two dimensions and 

N = 128 (K = 32) in three dimensions. We note that while these 

estimates are quite rough, it is clear that the rapid rise in total 

computing time with increasing N suggests these upper limits cannot 

be wrong by more than a factor of two. 
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Hov«v«r, In conaldorlng using i'lilac IV for «uch turbulence cel- 

cuUtione one should eleo consider the relatively saall array mmoij. 

V« deacrlbe the three-dlawnslonal caae in the folloeln« paragraph. 

»ippoae one reatricts attention to probleaa that can be done uaing 

only the faat array »eaory.    PresuMbly at any tUie «« need to be «lerlM 

-av «orda.    For Method 1 ve are reatrlcted to N < 32 and for Method 3 

to K < 16.    Clearly,   In order to solve Interesting probleas, use eill 

have to be eade of  the illlac disk.    The probleu that are then poaalble 

are those sitt awcuracy coaparable to that achievable with second-order 

finite differences elth IM 5 R ^ 2M.    Methods  like Type 1 ere clearly 

Halted by dlak apace to » - 128.    tore the disk la coapletely filled 

(indeed allghtly over) by nuabera ooe aeeda to be keeping.    The situation 

is slallsr In aethods of Type 2 for K - 64.    In any case one la faced 

elth a situation •here,   at any  Inataoce,  alaoat  all   the nuabera are 

being atored in the dlak.    Then the dlak transfer rate also glvea 

tlae lleltatlooa. 

Thua. conaider a situation auch as Method 1 with M •• 126.    (We 

say approxlaately aince the exact case does not fit  in: hoeever, *e 

laaglne thia taken care of.   for exaaple. by going to 32-bil eorda.) 
g 

At any tlae atep we are atorlng -6 x 10   words froa a previoua tiae 

•tep.    The ining 6 x 10 try placea are to be repeatedly uaed 

during the tiae atep.     If coding could b» done perfectly, one could 
.6 

laaglne proceeding ao:    The 6 x 10    velocity variable« froa a given 

atep are fed in.    Proa thoae the teras v • Vv,  tTv sad V •   (v • 7v) 

sre coaputed.    Since these ere so nuaerous they aust be taken out  to 

the dlak.    Fourier tranaforaa are then taken plan« by plane—«gain 

they aust be taken out.    Next one tranaforaa in the direction perpen- 

dicular to the planes—this is sgsin a pass in and out.    The aaae aust 

be done to Invert the tranafora of the «olution of  the Polsaon equation. 

Finally,  all teras aust be ooabined to obuin the next values of the 

:J7 
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«•loeltlM.    Thu» liier« ar« • nuabcr of pas*«* («bout  tmo)  tn «ad out 

of   th« disk.     (Sot all  tb« p««a«« require •  fuil 8 X 10* •ords.)    Bow- 

•vr,  tb« n«t «ff«ct  1« tbat aoiMthtaf lu« ft x (• x 10fl) VOM« bav« 

to «o le and out of  tb« dtak.    «ub • tranafar rat« of 107 «orda par 

««cond.   tbla la on tb« ord«r of alx aaoooda.    Va raaark tbai with our 

pravtous «atlaat« of (5 X 8.3) aaconda for Computing tiM p«;- at«p, 

tbla doaa not aatarUlly ebaofa tba tla« tbat  tb« total cmlcuJtiiou 

•ould tab«.    It do«« indicate tbat juat enlarflng toe diab «an. fold 

daaa not cbange tba situation aa to »bat problea« can ^a attacbad 

Tba r««l  llaltatlon lapoaad b«r« by tb« dlsb la bidden ty our 

aaataption of parfact coding.    If at any given paaa all tba owbara 

ara not on tba aaaa page *ltb all  tboaa n««ded to coaput« tbv next 

• tage fro« tba«. and indaad all pagaa are not arranged t© be atcaaatbla 

I» aaquantlal order, our aaaxaed tranafer of rate of 103 «orda in 

133 ua dropa to 10 aa or UM.    Claarljr.   to parfora calculaflona «tore 

a large fraction of tba diab auat be repeatedly read and raarlfea. 

•a require a »ary careful choice of aetbod of calculation and grrnt 

car« in coding.    It «ould aeaa Uiat tba aaln datarainant for tbc 

aetbod of calculation any ««11 b« tb« eaaa «Itb «blob it peraita coding 

for efficient access and egraaa froa tba diab.    Tbla ia a difficult 

problea and «ill  take careful atudy.    H>»ever. va believe it not 

aacaaaarily  inaoluble.    (In Appendix 8.  a poaaible,   tbougb probably 

not optiaal. approacb ia abetcbad.) 
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velocltl«».    Thui th«r« ar* a nuaber of paaaaa (about  tao)  in and out 

of  tha dlak.     (Kol all  tha paaaaa raqulra a full 8 X 108 aorda.)    »tow- 

ovar.   tha nat affact ia that aoaathlog Ilka 6 x (8 x 106) aorda have 

to go in and out of  tha dlak.    with a tranafar rata of  107 aorda par 

aacond.   thla is on tha ordar of six aacooda.    «a raaark that with our 

previous aatiaata of  (5 X 2.3) caoonda for coaputlng tlaa par atap. 

thla doaa not aatarlally change tha tlaa that tha total calculation 

•ould take.    It doaa indicate that Juat enlarging tha dlak aanyfold 

does not change the altuatlon aa to »hat probleas can be attacked. 

The real  Hal tat Ion  lapoaed here by  the dlak la hidden by our 

aaauaptlon of perfect coding.    If «t any given pass all   the nuabers 

are not on the saae page »1th all  thoaa needed to coapute the next 

ataga froa the«,  and  Indeed all pages art» not arranged  to be accessible 

In sequential order, our aaaused tranafar of rate of  103 »ords in 

133 ua drops to 10 aa or laaa.    Clearly,   to perfom calculatlona »here 

a  large fraction of tha dlak wat be repeatedly read and rewritten, 

»a raqulra a vary careful choice of aethod of calculation and great 

care in coding.    It «ould aeea that  the aaln deterainant for the 

aethod of calculation aay »all be the eaaa »ith »hlch it peraita coding 

for efficient accesa and agrees froa the dlak.    Thla  ia a difficult 

problea and »ill take careful atudy.    Ho»ever, »e believe it not 

naceaaarlly  Insoluble.     (In Appendix B.  a possible,   though probably 

not optiaal. approach ia akatched.) 
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VI  CONCLUSIONS 

In principle the advent of • new generation of coaputera (In parti- 

cular the I lilac IV) aakea posalble the nuaerlcal solution of aome 

Intereatlng probleaa In turbulence. By thMaaelvea, however, they «111 

not give the Ideal goal, an ability to predict the flow for a wide 

variety of practical probleaa. Many baalc questions and probleas 

Involve Reynolds nuabers far beyond preaent capabilities. What can 

be achieved are: 

(1) The obtaining of solutions to a nuaber of benchaark probleas. 

Theae can be used to test approxlaatlon aethods for Reynolds 

nuabers R < 104 - 4 x 104. 

(2) The obtaining of greater Insight Into the nature of turbulence. 

This would be the result of s nuaber of nuaerlcal experlaenta. 

Such an effort seeas desirable; probably 1'. does not require a 

aasslve prograa. 

Doing theae probleas on the I lilac IV presents severe difficulties. 

The srray aeaory la aaall coapared to the nuaber of Independent variables 

needed, at least for soae of the acre obvious aethods of coaputatlon. 

If desired, s ressonable prograa aight be the following: 

(1) An atteapt ahould be aade to aee how a typical problea could 

be oded so ss to achieve a resolution of distsnees of the 

order of 1/128 of the overall scale (e.g., in s pipe one wants 

to reaolve distsnees - 1/128 of r ). The aethod of calculation 
o 

used will be priaarily deteralned by eta« else of the array 

aeaory. One approach is to see ho« one can prograa so ss to 

efficiently sccess the disk aeaory. If it is found thst thla 

cannot be done well, an alternative aight be to go to very 

high-order difference scheaes. Presuaably a algnlfleant 
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(2) 

(3) 

reduction of the nuaber of Independent variables can be 

achieved, at the expense of an increase in computing tiae. 

The exact advantages and disadvantages obtained in this 

«ay are not known ana would have to be detemlned. 

Assuaing this coding problea has been solved, one would 

calculate the problems sketched in Section III. Since 

«any of the results are desired for theoretical insight, 

the calculation should be carefully followed by an advisory 

Itroup. The actual choice of what to calculate next will 
Jepend on what has already been found. 

Since huge quantities of nuabers will be generated, 

it will be necessary to be rather selective as to what one 

take- out of the computer. For exanple, one might want 

only to read out every 10 to 20 time steps the various 

quantities for which experimental results are available 

(see Section II-B).  In particular, though, one would want 

the energy spectrum, vorticity spectrum, skcwness, and 
kurtosis. 

Since the amount of experimental information at present 

far exceeds the amount of numerical results, an experi- 

mental program does not now seem in order. When (if?) 

numerical results are available, there may be some 

questionable features which would suggest specific 
experiments. 

Even if the problem of appropriate coding for the Illiac IV 

proves insoluble, some parts of the above program could be 

usefully done on a lesser computer. For example, even wit). 

an IBM 360/lo6 or a CDC 7600 some of the above problems 

could be done, but at Reynolds numbers lower than those 
envisaged for the Illiac. 

It is, of course, possible that the computing estimates that have 

been made are too high, In that alternative methods of calculation may 

require less computing time.  However, It Is thought that our estimates 

are fairly conservative.  In any event the primary conclusion—that 

the computations needed Increase dramatically with Reynold's number- 

is certainly correct. 

(4) 
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Appendix A 

A NAVIER-STOKES COMPUTER? 

1.   Summary 

The conceptual design of a special-purpose computer array to solve 

the N-S (Navier-Stokes) equation is discussed below.  An array of 100 

to 150 special processorr. (each roughly like a bare modern minicomputer) 

with a 100-ns add time will permit the solution of the second-ordei 

difference approximation to the N-S equati.n in a total processing time 
4 

(for 1)  time steps) of several minutes (N = 64) to seven hours (N = 1024). 

This processing time could be decreased by paralleling and/or pipelining 

5 
in each processor. The total hardware cost is of the order of $5 X 10 

to 10 . 

The major problem is not the processors but memory. A total of 

7 11 
6 X 10  (N = 64) to 2 X 10  (N = 1024) bits are required.  It appears 

-4 
that for the largest calculation, a cost of no more than $10  per bit 

is required.  In order to match memory speed to processor speed, each 

processor will require 16 K to 32 K of 100-ns memory in at least eight 

-3 
banks and four or eight drums or disks with about an 8 X 10 -s average 

-6 6 
access time, a 5 X 10 -s-per-word transfer time and 1 to 2 x 10 total 

6 
storage.  That is, a total of 1.6 to 3.2 X 10 words of 100-ns memory 

C 
and 400 to 800 independent disks, each with a capacity of 1 to 2 X 10 

words is required to handle even the N = 512 problem. The total cost 

7 
of this memory will certainly be in excess of $10 . 
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2.  Discussion 

Assume that there are K V-Boxes, L F-Boxes, and M P-Boxes, and a 

memory (all are described in the following sections), then the total 

time to calculate V and P on all mesh points for one time step is 

The total cost, C , is the sum of the cost of the V, F, and P boxes, 

the C box, and memory, and is 

C = KC  + LC  + MC  + C  + C 
T    V    F    P   c   M 

= (K + L + M) (c  + c  + 8c + c ) + C  + C 
am    r   w    c   M 

where 

c = Cost of one adder 
a 

c = Cost of one multiplier 
m 

c = Cost of one register 
r 

c = Cost of wiring, 
w 

The memory cost, C , Is 
M 

C = 224 c N , or 
M       o 
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CM ia 64 V + 32  ci(7N     " 2n> 

= 64   (c    - c, )n  + 224 c N' o 1 i 

depending on whether a single high-speed memory,   with a cost  per bit 

of  Co or a  two-level memory  (2n words of  fast memory at a cost  per bit 

of  Co and  the remainder slow memory  at  a cost per bit of c  )  is used. 

The high-speed memory has a cycle  time T    £ t    and the slow-speed 
o        o 

memory has a cycle  time of T   . 

Assume,   for the sake of making an estimate,   that  roughly  the  same 

time  iü  spent  in each of  the boxes.     That  is, 

_-.      8j&n N 
200 2 13 
—— pa -■ F» —. 

K L M 

Taking N = 256, it is seen that M = K/10 and L = K/4 will satisfy. 

Then, 

T « (600 N3/K) t 
o 

Taking N in the range 64 to 1024 and ^ = 100 n£ (currently available 

adders achieve this), it is seen that K ^ 100 gives T, the total compute 

time per time step, in the range lo"2 to 60 s, for a maximum of, say, 

seven hours per computation. 

If seven hours per computation is too long, it can be considerably 

shortened, by at least an order of magnitude. If the (second order) 

difference approximations to the Navier-Stokes equations are examir d 

in detail, it becomes clear that it is possible to build into each of 

the processors a fairly high degree of parallelism and/or pipelining 

and thus achieve the speedup. However, there seems to be little point 

in this because, as will be seen, the memory requirements are already 

difficult and speeding up the processors will only make them worse. 
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In order to keep the processors busy it is necessary to supply 

some memory with an access time T , 
o 

T <: t = 100 ns. 
o   o 

If WJ had a set of main memories, one for each processor, it is clear 

that even for an N = 64 calculation something of the order of 2 X 10 
6 

words (64 X 10 bits) of memory would be required.  If 100-ns memory 
5 

costs $0.01 per bit, the cost is of the order of $6 X 10 . For N = 1024, 
9 

the cost is of the order of $2 X 10 . 

If a number of secondary, slow speed, memories are used, then the 

access time (see below) could be in the range 1 to 10 JUS depending on 

the number of banks (one to eight) in each of secondary memories.  Still, 
7 11 

between  6 x 10 and 2 X 10  bits are required.  If the cost per bit 
-4 6 

were only $10  the largest calculations require of the order of $20 X 10 

worth of memory. 

Going to drums or disks for the secondary memory will help, but not 

too much.  If each primary memory (2n words, 100-fis access time) has 

£,  disks, each with an average access time of T and a transfer time per 
o 

word of T , then 

T 
i 

n 
a   1 ^      -6 
— + -— ^ 2 X 10 

■■ 

The right-hand side is an estimate of the time the fastest box (V, F, 

or P) takes to periorm its calculation on one mesh point. Taking 

-3 
T = 8 X 10  s 
o 

-6 
T = 5 X 10  s 
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A number of pairs of n and Ä can be chosen to satisfy this inequality. 

Some possible choices are 

n = 8 K, i. = 4 

n = 8 K, JL = 8 

n = 16 K, £ = 4. 

The first gives a time just a bit too long and the others satisfy the 

iiieauality comfortably. Therefore, 100 fast memories (100 ns) either 

of 16 K or 32 K words capacity and 400 or 800 independent disks,, each 

with 10 to 2 X 10 words, are required to handle the N «= 1024 problem, 

4 6 
If each disk-drive costs only $10 , the disk cost is $4 to 8 X 10 , 

7     8 
Also 5 x 10 to 10 bits of fast (100 ns) memory is required.  If the 

cost were only $10  per bit the cost is $5 to 10 x 10 , 

Finally a word on the processor costs. Each of these boxes appears 

roughly equivalent to a good minicomputer.  The bare cost of the processor 

3 
should be similar, say $5 to 10 X 10 .  This is equivalent to taking 

m 
c « $100 to $200 
r 

and assuming that the wiring cost is two to three times the hardware 
5     6 

cost. The total processor cost is then of the order $5 X 10 to 10 , 

which is considerably smaller than the memory cost. 

3.   The V Box 

The V box calculated V and the right-hand side of the Poisson 

equation for P on one mesh point. Assume that all of the operations 

necessary to perform these calculations are performed sequentially and 

that the adder and multiplier are not pipelined.  The total time for 

this calculation, t , is then 
v 
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t = (number of addition)(addition time) 
v 

+ (number of multiplications)(multiplication time). 

These calculations require approximately 100 additions and 50 multipli- 

cations. Therefore, 

t = 200 t 
v       o 

The total time to calculate on N points, assuming no parallel V boxes, 

is 

T = (200 N ) t 
V o 

In the worst case, two successive operations will require four 

different operands.  To „void waiting for the second pair of operands 

to be fetched from memory, they should be fetched while the first 

operation is being performed. This )equires two registers to hold 

the current operands and two registers ^o hold the next operands. A 

result register to hold the result of the current operation is needed 

as well as a holding register to save the partial sum accumulated in 

calculating V. Finally two registers for constants are probably needed. 

In total: 

• Two current operand regljters 

• Two next operand reftisters 

• Two constant registers 

• One result registe: 

• One holding register 

for a total of eight registers are needed.  In addition, one adder and 

one multiplier are also required. 
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The cost of the hardware in a V box, and assembly cost, is 

C = c + c + 8c + c 
V   a   m    r   w 

where 

C = Total cost of one V box 

c a Cost of one adder 
a 

c = Cost of one multiplier 

c = Cost of one register 

c = Cost of wiring up a V box, 

4.   The F Box 

The F box is Just a machine to calculate the FFT on N2 points in 

a fixed plane and then over all planes,, A large number of FFT machines 

have been built and it i3 probably more accurate to estimate the time, 

TF, to calculate the required FFT's as well as the cost, C , of a single 
F 

FFT machine, oy using the speed and cost figures for existing machines, 

than it is to make an a priori estimate. However, for completeness, 

such an a priori estimate will be made. 

In order to calculate the FFT in one plane (NXN) requires 

2    2 
N In N additions and. 

2    2 
^N In N multiplication, or 

„2    2 
2N In N operations. 

This must be done for N planes, requiring 

3   2 
2N In N operations. 
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After solving the resultant set of tri-dlagonal equations In trans- 

form space, the Inverse must be calculated, Just doubling the number of 

operations. 

Therefore the time to take all the FFT and inverses, assuming no 

parallel F boxes, is 

T = (4N3ln N2) t 
F        2    o 

It appears  that an F box would have an architecture similar to a V box, 

L<O,   for purposes of estimate,   it will  be assumed  that   their costs are 

the saune—i.e., 

C    = C 
F V 

5.       The P Box 

The P box solves the set of trl-diagonal equations in transform 

2 
space.  There are a total of N  sets of trl-diagonal equations to be 

solved.  It can be shown that each set of equations requires about 13N 

3 
operations and thus the complete solution requires 13N operations. 

The total time to do this calculation, again assuming nn parallel P 

boxes, is 

T = (13N ) t 
P o 

Again,   it  seems reasonable  to assume the cost of   the P box is 

about  the sa.T;e as  the cost of   the V box,   so 

CP = CV 
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6. The C Box 

The C box Is a control unit for the V, F, and P boxes.  It would 

be a "hardwired" control unit which would normally sequence the boxes 

to execute the algorithms which calculate V and P. It would certainly 

be of complex design, but probably no more so than the control unit 

for any large general-purpose computer. Its operations would, of course, 

be concurrent with the other boxes and would cost nothing in processing 

time.  Let C be its construction cost, 
c 

7. Memory 

There are a  total of N    mesh points.    A value of V and P must  be 
3 

sto-ed  for each mesh point;   thus at  least 4N    words of memory are re- 
•♦ 

quired.     If a centered-time-differencc scheme is used,   then V at  two 
3 

time steps must be stored, raising the total to 7N words of memory. 

3 
It is easily seen that another 3N words is not required to store the 

-» 
new values of V. Depending on the spatial differencing scheme, only 

2 
a multiple of N additional words is needed. For example, if a second- 

-♦ 
order scheme is used, only the values of V and P in the plane above and 

-♦ 
below are needed to calculate V in a particular plane. When the calcula- 

^n+1 _»   _» n+1 -»P-1 

tion of V   and [v •  i(v  •  V)v])   for plane 2 are complete, V   and 

n 
P for plane 1 will never again be needed. Therefore the values of 
..»n+1 _>n-l 
V  , for plane 1, can be stored in the memory holding V   of plane 1 

and the values of {V  •   L(V • V)Vjj   of plane 1 can be stored in the 

memory holding P of plane 1. Thus it is necessary only to carry along 
2    -*n+l    .   _ -♦    ->-,., n+1 2 

two planes (2N ) of V   and [V  • [(V • 7)VJ}   for a total of 8N 

additional words of memory.  Because N » 8 in calculations of interest, 

3 
this will be neglected  in comparison  to 7N  . 
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Total ry requireaents «re then 

7N words, 

and, asauaing each word has 32 bits, which seeas to be about the 

ainiaaa acceptable, a total of 

224M bits 

is required. 

To perait the V, F, and P boxes to operate without being held 

up waiting for aeanry fetches, it is necessary to have two words be 

fetched froa aeaory in one add tiae. Therefore, 

T s it 
o    o 

where T  is the memory cycle tiae. 
o 

It aay not be feasible (due to cost) to provide 7N words of 

fast aeaory.  If so, a buffer or cache aeaory of, say, 2n words with 

a cycle tiae of T , and a secondary or aain aeaory of a words with a 
o 

longer cycle tiae of T can be used. Clearly 

3 
2n -f a = 7M   . 

Pages of n words will be exchanged between the buffer and the 

main memories. Because T < T , the time required to effect the 
o   1 

exchange will be determined by T and will be nr . Since the pages 

are being exchanged, a scheme similar to the exchange jump on the 

6600 could be used to make the time nr    instead of 2nT as might be 

supposed. 

The exchange time, nr , must be less then, or equal to, the 

time for the fastest of the boxes (V, F, or P) to process n words. 

The time for each of the boxes to process one mesh point (one word) 
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3 
Cko b« ««tiMtcd by dividing the total procct« tl»e by N .  The 

alnlmia time per word la that of the P box and li 13t . Therefore, 

nt i (13t )B  or 
1     o 

T < 13t 

voa coat of the mmory  !■ 

C    - c  (224M  ),        or 
m o 

« c  (64n)  + c,(32«), 
o 1 

»ith 

2n •*■ ■ B 7N 

c "  cost per bit of a fast menory (T s ^t ) 
0 o    o 

c ■ cost per bit of r. alow aeaory (T S 13t ), 
1 1     o 

Note that the aeaory cycle tines can be longer If the memory la 

broken up Into modules.  If the primary memory has four modules, then 

-  » t , but, If there are eight modulus, then we cannot let T ■ 2t 
r   o o    o 

because It would still take 2t to get two words, and the processor 
o 

* »uld have to wait. However, there Is a bigger advantage In using 

wduljs In the secondary memory.  If there are I modules in the 

tecMdary memory, then (n/i) words are transmitted from each module 

with cycle time  T ) and 

(;h ^ (13t )n 
o 

or 
T, S 13jtt 
1      o 
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Thl« BMUTO« the secondary memory  is a rend« «ccesa »e«ory.  If the 

secondary memory  Is not a random »ccess »enory but a sequential access 

)ry (dnw, disk, or tape drive), then t^ie total transfer tl»e is 

the accese ti»e, T , plus the actual data transfer tiee and. to 

obviate the processor waiting. 

(5)'. 
T
a
+ m ^^V" 

ur 

d) * d) £   13t 
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Appendix B 

A POSSIBLE APPROACH TO TURBULENCE PROBLEMS ON ILLIAC IV 

As Indicated In Section V, one of the aaln problemo of doing fine- 

scale turbulence problems on the I lilac is that such a large number of 

variables Is needed. There we usually considered 64-blt words, but even 

with 32-blt words the problem Is essentially the same: Many more numbers 

are needed than can be held In the array memory. Accordingly, numbers 

have to be passed In and out of the I lilac disk several times. The 

problem Is to put numbers to be stored after an Intermediate calcula- 

tion onto the disk so that those numbers which are to be used together 

in the next sequence of calculations are stored on the same or adjacent 

pages.  The problem oan be Illustrated by considering a calculation 

along the lines of Method 1 of Section IV.  Imagine labeling memory 

positions by grid position so that neighboring memory units have 

information from neighboring grid points.  At a given time step we 

first compute velocity derivatives.  Since these are computed using 

nearby values of velocities, we can compute these so that the values 

of these at neighboring points can be read onto the disk on the 

appropriate pages. At the next step we are to solve the Poisson 

equation for the pressure.  Imagine this is a pipe problem. We first 

might Fourier transform in 6 and z.  These numbers then must go to 

the disk.  If these numbers are denoted by s (r), what comes out at 

a given time are all those for a fixed r. However, for the calculation 

of a transform in r at the next stage, we want all Sj Jr) for fixed (i.J) 

and different r all on the same page. How do we do this? Clearly this 

approach is not acceptable, but, this may not preclude doing the calculation 
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by another method chat does admit efficient access and egress from 

the disk. This may not be Impossible. 

To see this, we -sketch a possible method of calculation which, 

while certainly not optimal, may perhaps work.  Imagine that to solve 

the Polsson equation we decompose P Into P and P , where P, is to be 
s     X        \ 

a solution ol the Laplace equation and P a particular solution of the 
s 

Polsson equation corresponding to a correct condition at one part of 

the boundary and an assumed condition at the next layer of points 

within the grid.  P Is found by taking transforms In 6 and z for 
s 

several planes starting at a boundary surface.  Then the transform 

s 
P (r) Is found essentially by solving a second order difference 

equation In r with prescribed Initial conditions and slope. After 

s 
this Is found, the Inverse P (r) is found by inveitlng the transforms. 

Now the pressures at neighboring points are being produced together 

s 
and can be efficiently stored In the disk.  When P has been calculated 

for all r we still must satisfy the correct boundary conditions. This 

Is done by finding a solution to the Laplace equation with boundary 

values which are the difference of the correct ones and those Implied 

by our particular solution P . 
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